AN O(n log n) ALGORITHM FOR INPUT-OR-OUTPUT TEST IN DISJUNCTIVE SCHEDULING

نویسندگان

  • Yuichiro Miyamoto
  • Takeaki Uno
  • Mikio Kubo
چکیده

of O(n log n) algorithm Step1(initial procedure) Initialize a binary tree BT . Step2(update procedure) If possible, update BT . Else, exit the algorithm. Step3(test procedure) Test candidate pairs of jobs. Go to Step2. Let Lpair(v) be a set of values fpair(i, j) of v. The initial procedure is below. Initial procedure Step1 Put indices to jobs so that d1 < d2 < · · · < dn. Step2 Construct a binary tree BT that has n leaves {l1, l2, . . . , ln}. Let head = min{ri | i ∈ J}. Each leaf li corresponds to a time interval [head, di]. Step3 Set Linterval(li) = finterval(head, di), ∀i ∈ J . Step4 Set Linterval(v) = min{Linterval(l) | l ∈ dleaf(v)}, ∀v ∈ V . Step5 Set Lpair(v) = ∅ for all v ∈ V . The time complexity of the initial procedure is O(n) except for the sorting. The required memory space is O(n), since each vertex v ∈ V has just one label Linterval(v). Figure 4 shows an instance of the disjunctive scheduling problem.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Output-sensitive algorithms for optimally constructing the upper envelope of straight line segments in parallel

The importance of the sensitivity of an algorithm to the output size of a problem is well known especially if the upper bound on the output size is known to be not too large. In this paper we focus on the problem of designing very fast parallel algorithms for constructing the upper envelope of straight-line segments that achieve the O(n logH) work-bound for input size n and output size H. When ...

متن کامل

Speed-ups in Constructive Solid Geometry

We convert constructive solid geometry input to explicit representations of polygons, polyhedra, or more generally d-dimensional polyhedra, in time O(n), improving a previous O(n log n) bound. We then show that any Boolean formula can be preprocessed in time O(n log n/ log logn) so that the value of the formula can be maintained, as variables are changed one by one, in time O(log n/ log logn) p...

متن کامل

Waste Makes Haste: Tight Bounds for Loose Parallel Sorting

Conventional parallel sorting requires the n input keys to be output in an array of size n, and is known to take fl(log n/log log n) time using any polynomial number of processors. The lower bound does not apply to the more "wasteful" convention of padded sorting, which requires the keys to be output in sorted order in an array of size (1 + o(1))n. We give very fast randomized CRCW PRAM algorit...

متن کامل

Optimal, Output-sensitive Algorithms for Constructing Planar Hulls in Parallel

In this paper we focus on the problem of designing very fast parallel algorithms for the planar convex hull problem that achieve the optimal O(n log H) work-bound for input size n and output size H. Our algorithms are designed for the arbitrary CRCW PRAM model. We first describe a very simple ©(log n log H) time optimal deterministic algorithm for the planar hulls which is an improvement over t...

متن کامل

Subset sum "cubes" and the complexity of primality testing

A Σ3 Boolean circuit has 3 levels of gates. The input level is comprised of OR gates each taking as inputs 2, not necessarily distinct, literals. Each of these OR’s feeds one or more AND gates at the second level. Their outputs form the inputs to a single OR gate at the output level. Using the projection technique of Paturi, Saks, and Zane, it is shown that the smallest Σ3 Boolean circuit testi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004